3.760 \(\int \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=144 \[ \frac{2 \sqrt [4]{-1} a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{(2-2 i) a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

(2*(-1)^(1/4)*a^(3/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/d + ((2 - 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan
[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.340692, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {4241, 3555, 3544, 205, 3599, 63, 217, 203} \[ \frac{2 \sqrt [4]{-1} a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{(2-2 i) a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*(-1)^(1/4)*a^(3/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/d + ((2 - 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan
[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3555

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dis
t[2*a, Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Dist[b/a, Int[((b + a*Tan[e + f*x])*Sqr
t[a + b*Tan[e + f*x]])/Sqrt[c + d*Tan[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{3/2}}{\sqrt{\tan (c+d x)}} \, dx\\ &=\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} (i a+a \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx+\left (2 a \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{\left (a^2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac{\left (4 i a^3 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{\left (2 a^2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{\left (2 a^2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{2 \sqrt [4]{-1} a^{3/2} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}+\frac{(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 1.42772, size = 255, normalized size = 1.77 \[ -\frac{i a e^{-i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (8 \log \left (\sqrt{-1+e^{2 i (c+d x)}}+e^{i (c+d x)}\right )+\sqrt{2} \left (\log \left (2 \sqrt{2} e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )-\log \left (-2 \sqrt{2} e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )\right )\right )}{2 \sqrt{2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-I/2)*a*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[(I*(1 +
E^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]*(8*Log[E^(I*(c + d*x)) + Sqrt[-1 + E^((2*I)*(c + d*x))]] + S
qrt[2]*(-Log[1 - 3*E^((2*I)*(c + d*x)) - 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]] + Log[1 - 3
*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]])))/(Sqrt[2]*d*E^(I*(c + d*x))
)

________________________________________________________________________________________

Maple [B]  time = 0.344, size = 571, normalized size = 4. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

1/2/d*2^(1/2)*a*(cos(d*x+c)/sin(d*x+c))^(1/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)-1)*(I
*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)*2^(1/2)+2*I*2^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2))-I*ln(((
cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)*2^(1/2)-ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)*2^(1/2)+2*arctan(((cos(d*x+
c)-1)/sin(d*x+c))^(1/2))*2^(1/2)+ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)*2^(1/2)-2*I*ln(-(((cos(d*x+c)-1)/sin(
d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c
)-cos(d*x+c)-sin(d*x+c)+1))-4*I*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-4*I*arctan(((cos(d*x+c)-1)
/sin(d*x+c))^(1/2)*2^(1/2)-1)-4*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-4*arctan(((cos(d*x+c)-1)/s
in(d*x+c))^(1/2)*2^(1/2)-1)-2*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+
1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)))/(I*sin(d*x+c)+cos(d*x+c)-1
)/((cos(d*x+c)-1)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.46535, size = 1343, normalized size = 9.33 \begin{align*} \frac{1}{2} \, \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} \log \left (\frac{{\left (2 \, \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} + i \, \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{2 \, a}\right ) - \frac{1}{2} \, \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} \log \left (\frac{{\left (2 \, \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - i \, \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{2 \, a}\right ) - \frac{1}{2} \, \sqrt{-\frac{4 i \, a^{3}}{d^{2}}} \log \left (\frac{{\left (\sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} + i \, \sqrt{-\frac{4 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) + \frac{1}{2} \, \sqrt{-\frac{4 i \, a^{3}}{d^{2}}} \log \left (\frac{{\left (\sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - i \, \sqrt{-\frac{4 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) - a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((
I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + I*sqrt(-8*I*a^3/d^2)*d*e^(2*I*d*x + 2*
I*c))*e^(-2*I*d*x - 2*I*c)/a) - 1/2*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) - a)*sqrt(a/(
e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - I*sqrt
(-8*I*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) - 1/2*sqrt(-4*I*a^3/d^2)*log((sqrt(2)*(a*e^(2*I*
d*x + 2*I*c) - a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)
)*e^(I*d*x + I*c) + I*sqrt(-4*I*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) + 1/2*sqrt(-4*I*a^3/d^
2)*log((sqrt(2)*(a*e^(2*I*d*x + 2*I*c) - a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)
/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - I*sqrt(-4*I*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)
/a)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*sqrt(cot(d*x + c)), x)